Compound Formation and Phase Equilibria in the System Li₄SiO₄-LiGaSiO₄

P. QUINTANA* AND A. R. WEST

University of Aberdeen, Department of Chemistry, Meston Walk, Aberdeen AB9 2UE, United Kingdom

Received September 26, 1988; in revised form March 29, 1989

Four new phases have been synthesized and characterized in the system Li₄SiO₄-LiGaSiO₄. Three have the ideal formula Li₅GaSi₂O₈, one of which, δ , is a stoichiometric phase and the other two, β and γ , form in addition a range of solid solutions to either side of this composition. The β phase appears to be structurally related to γ -Li₃PO₄ and the γ phase is a low-temperature ordered form of β . The $\beta \rightleftharpoons \gamma$ transition is similar to that observed in Li₄Zn(PO₄)₂. The fourth new phase, α , is a solid-solution phase structurally related to γ -LiAlO₂. Li₄SiO₄ forms an extensive range of solid solutions which gradually transform to the α structure with increasing LiGaSiO₄ content. Low-temperature, ordered forms of the α solid solutions and the Li₄SiO₄ solid solutions have been partially characterized. The complete phase diagram Li₄SiO₄ -LiGaSiO₄ has been determined; the system behaves as binary except at compositions close to LiGaSiO₄ at which LiGa₅O₈ appears in partially melted samples. ∞ 1989 Academic Press, Inc.

Introduction

Lithium aluminosilicates are widely used as the basis for glass-ceramics and ceramics with zero coefficient of thermal expansion (1). Only limited studies have been reported on the existence, structure, and properties of lithium gallosilicates, however. A study of compound formation on the join SiO₂-LiGaSiO₄ showed the formation of several phases and solid solutions, both thermodynamically stable and metastable, some of which are structurally similar to the lithium aluminosilicates (2). The conductivity of some of these phases has been reported (3): LiGaSiO₄ has a low level of electronic conductivity which contrasts with LiAlSiO₄ which is a one-dimensional Li⁺ ion conduc-

* Permanent address: Facultad de Quimica, UNAM, Mexico DF 04510, Mexico. tor at high temperatures. $LiGaSi_2O_6$ and its solid solutions exhibit a low level of Li^+ ion conductivity. Lithium orthosilicate, Li_4 SiO_4 , is the parent structure of lithium ion conducting solid electrolytes which have been proposed for solid-state battery applications (4–6). The present study reports the formation of several new phases and solid solutions on the join Li_4SiO_4 -LiGaSiO₄.

Experimental

Starting materials were Li_2CO_3 , Ga_2O_3 , and SiO_2 . All were high-purity reagents and were used directly from the bottle: from weight loss checks, drying was found to be unnecessary. Mixtures were prepared in 5 to 10-g amounts, mixed thoroughly with an agate mortar and pestle, and fired in Au foil boats, initially at 600–800°C to drive off CO_2 . Various firing schedules were used to complete the reactions and these are described at appropriate stages under Results. X-ray powder diffraction patterns were recorded with a Philips Hägg Guinier camera, $CuK\alpha_1$ radiation, 1.54059 Å; for accurate *d*spacing measurements, either KCl or SiO₂, quartz was added as an internal standard. Differential thermal analysis, DTA, used a Stanton-Redcroft 674, 1640°C instrument.

Results

Phases and Solid Solutions on the Join Li₄SiO₄-LiGaSiO₄: General Comments

Several phases and solid solutions form on this join, as shown by the rather complicated phase diagram in Fig. 1. Some are stable only at high temperatures, others only at low temperatures. Some are stoichiometric phases; others form extensive solid solution series. Various phase transitions occur, the temperatures for which are very composition-dependent.

All of these phases are new and a major difficulty in the early stages of this project was to locate their compositions. This was for two reasons: samples were prone to lithia loss by volatilization on prolonged heating, of small samples especially, at temperatures above $\sim 1000^{\circ}$ C; in order to form some of the phases, long reaction times, 1–2 days, at high temperatures, $1000-1100^{\circ}$ C, were found necessary in order to obtain complete reaction and singlephase products. In the initial stages, samples were reacted at $800-1000^{\circ}$ C for a few hours and, while it was clear that new

FIG. 1. Phase diagram Li₄SiO₄-LiGaSiO₄. L₂Sss, Li₄SiO₄ solid solutions; LG₅, LiGa₅O₈; 112, LiGa SiO₄; 1, liquid.

phases were forming, a self-consistent pattern did not emerge. It was then suspected that at least some of the new phases may not lie on this particular join but may be elsewhere in the ternary system $\text{Li}_2\text{O}-\text{Ga}_2\text{O}_3-\text{SiO}_2$. During a systematic study of the ternary system and while trying to establish the subsolidus compatibility relations, it was realized that slowness of the reaction rates was a major factor in yielding discrepant results. It was also clear that many of the new materials have compositions that do, in fact, lie on the join Li₄ $\text{SiO}_4-\text{LiGaSiO}_4$.

In order to establish the compositions and stabilities of the new phases and ultimately determine the phase diagram, it was clear that the conditions of heating required to obtain complete reaction depended very much on composition and the particular phase product. For compositions close to Li₄SiO₄ and containing up to about 40% LiGaSiO₄, reaction occurred in 1 day at ~900°C. For compositions around 40-60% LiGaSiO₄, several days at 1000°C were required in order to obtain the low-temperature δ phase. But, in order to obtain the high-temperature phases, several hours at temperatures of 1050-1150°C, sometimes followed by quenching of the sample, were required.

In general, samples were prepared from prereacted mixtures of Li₄SiO₄ and LiGa SiO_4 . These were pelleted and the pellets were covered with loose powder of the same mixture and reacted in large Pt envelopes. The purpose of the covering powder was to prevent lithia loss from the pellets; only the pellets were used for X-ray analysis and subsequent experiments. The conditions of reaction used for each composition are given in Table I. Pellet fragments were used for further heat treatment experiments, to determine solid-solution extents, thermal stabilities, etc., and to construct the phase diagram shown in Fig. 1. These experiments are detailed in Table II. The characteristic features of each of the new phases and solid solutions is discussed next.

The *α* Phase

This is a solid-solution phase of general formula $Li_{4-3x}Ga_xSiO_4$. For compositions in the range $\sim 0.25 < x < \sim 0.35$, it is stable at all temperatures below melting (Fig. 1) either as the α form or as low-temperature α', α'' forms. At high temperatures, close to melting, it has a more extensive compositional extent, $\sim 0.20 < x < \sim 0.60$. It is not clear from the phase diagram whether the α phase has an ideal composition or not. Thus, its maximum melting temperature appears to occur not at a simple composition but instead, at around x = 0.45. On the other hand, the compositions which are stable at lower temperatures have lower x indicating that perhaps x = 0.33 is the ideal composition. In order to determine the ideal composition of α , if indeed there is one, crystallographic studies are required.

The X-ray powder pattern of the α phase is fairly simple, indicating a high-symmetry structure. It is very similar to that of γ - $LiAlO_2$, which is tetragonal and the powder pattern has been indexed using that of $LiAlO_2$ as a guide. For one composition, x = 0.35, the complete powder pattern was measured with an internal standard and accurate lattice parameters obtained by leastsquares refinement (Table III). Significant changes in the powder pattern occur with changing composition, as shown by the variation in lattice parameters (Fig. 2): a decreases but c increases with x. The data show some scatter, but for these measurements, the X-ray films were used without an internal standard; the lattice parameters were obtained from the positions of the 020 and 012 lines.

From the similarity of the powder pattern of the α phase to that of γ -LiAlO₂, it seems that these could be isostructural. This

QUINTANA AND WEST

Composition				Composition			
Li4-3xGaxSiO4	T (°C)	<i>t</i> (hr)	Phase(s) produced	Li _{4-3x} Ga _x SiO ₄	T (°C)	<i>t</i> (hr)	Phase(s) produced
x = 0.1	900	18			1025	24	
	1000	18	L ₂ Sss		1050	24	$\alpha + \beta$
0.15	900	19	-	0.48	950	24	,
	1000	24	L ₂ Sss		1000	72	
0.2	900	19	-		1020	24	
	950	36			1040	24	β/γ
	1000	24	L ₂ Sss	0.5	950	43	
0.22	925	24	-		1000	72	
	1000	5			1025	24	
	1030	23	L ₂ Sss		1050	24	γ
0.25	900	19	L -	0.52	1000	72	,
	950	36			1050	48	γ
	1000	24	L ₂ Sss	0.55	1000	48	
	950	43	-		1025	48	
	1000	72	L ₂ Sss		1040	36	β
0.28	925	24	-	0.57	800	24	
-	1000	5			1000	174	ß
	1030	23	L ₂ Sss	0.6	900	20	
0.3	900	48	-		1000	96	β
	1000	22		0.65	950	43	,
	1050	20	α		1000	72	β + trace 112
0.35	900	18		0.7	900	20	,
	1000	24	α		1000	96	$112 + \beta$
	1000	144	α	0.75	950	43	,
0.4	900	24			1000	72	$112 + \beta$
	1000	48		0.8	900	69	•
	1050	24	α		1000	60	$112 + \beta$
	850	15		0.85	900	24	•
	950	24			1000	24	
	1000	8	α		1015	24	$112 + \beta$
0.42	1000	144		0.9	850	24	•
	1030	20	α		950	24	
0.45	950	43			1000	60	$112 + \beta$
	1000	72					-

TABLE I Conditions of Synthesis: Pelleted Samples Buffered (Covered) with Previously Sintered Powder of the Same Composition

Note. L₂Sss, Li₄SiO₄ solid solution; 112, LiGaSiO₄.

would apply strictly only at the composition x = 0.5, where the cation : anion ratio is unity and would indicate an ideal composition of x = 0.5 for α . The crystal structure of γ -LiAlO₂ (7) contains cations in tetrahedral sites in an oxide ion array which is intermediate between hexagonal close packed and tetragonal packed (8, 9). Rewriting γ -LiAlO₂ as γ -Li₄Al₄O₈ and comparing this with the x = 0.5 composition, Li₅ GaSi₂O₈, the replacement mechanism for the two phases to be isostructural is

$$4Al^{3+} \rightleftharpoons Li^+ + Ga^{3+} + 2Si^{4+}$$

All cations are presumed located in tetrahedral sites for x = 0.5. For other composi-

IADLE II	TA	BL	Æ	Π
----------	----	----	---	---

Results of Heating Experiments in the System Li_4SiO_4 -LiGaSiO₄

T (°C)	t (hr)	Х-гау	results	Comments	T (°C)	t (hr)	X-	ray results	Comments
			x = 0.1		1027	1.75	α		
1150	0.66	L ₂ Sss		^d , Partial melting	1015	3.5	α		
1150	0.5	L ₂ Sss		d	977	5	α		
1125	0.42	L ₂ Sss		d	852	22	α		
1100	0.66	L ₂ Sss		d	800	18	α		ď
1000	12	L ₂ Sss		d	700	23	α		a.d
			x = 0.15		601	16.5	α		a
1150	0.66	L ₂ Sss		^d , Sample melted	500	24	α		<i>a</i> ,c
1130	0.75	L ₂ Sss		4	300	18	α"		u,c
1125	0.42	L ₂ Sss		a	1150	0.22		x = 0.3	Commission and
1080	1			c	11.79	0.33	α		Sample melted
/00	20	L ₂ SSS		() ()	1140	1	α		Sample melled
450	20			c.a	1007	0.5	a		Partial menting
400	19	L ₂ 3		c.a	1090	17	u a		
400	10	L ₂ S		a.d	1077	0.5	â		
400	12	L ₂ 3	r = 0.2		1069	14	a n		
1200	0.5	a	. 0.2	d	1048	0.5	â		
1150	1.16	LaSss		^d Partial melting	1031	0.5	â		
1100	0.66	LaSss		d	1009	0.5	â		
1080	1	LaSss		с	850	144	a		d
1030	17	L2Sss		с	757	70.5	α		a
700	25	LaSss		c	700	24	α		¢
500	25	$L_2SSS + I$	oS'	c,a	650	23.5	α		c,a
450	20	L ₂ Sis - L	- 2	c,a	600	28.5	α		c,a
400	24	L_2S'		c,d	500	23	α'		c,a
400	12	L_2S'		a.d	450	16.5	α'		с,а
		-	x = 0.22		400	24.5	α'		с,а
1152	0.16			Melting	300	23	α″		с,и
1129	0.25	L ₂ Sss		Partial melting	900	2	α		с,а
1110	0.16	L ₂ Sss						x = 0.35	
1087	0.16	L ₂ Sss			1160	0.66	α		^d , Sample melted
1070	0.5	L ₂ Sss			1140	1	α		^d , Partial melting
1047	0.16	L ₂ Sss			1115	4	α		
800	18	L ₂ Sss		d	1088	17	α		,
601	16.5	L ₂ Sss		a	700	72	α		d
709	17.5	L_2Sss	0.25	a	601	16.5	α΄		e.a
11/0	0.77	د	x = 0.25		400	32	α"		c.a
1160	0.66	α		", Sample melted	400	19	α"		c.a
1132	0.10	α		Sample melted	000	10	α		c.a
1129	0.25	α		Partial melting	900	00	α		C,0
1120	0.5	α		u u	1160	0.66		x = 0.4	d Dortiol malting
1087	0.10	α			1140	0.00	a		
1075	18.5	L See			1096	0.5	a		
900	67.5	C ₂ 533		d	1078	0.5	a		
846	23	a			1027	23.5	a		
757	70.5	a		a	803	89.5	$\alpha + \beta$		a
990	1.5	α		a	900	67.5	$\alpha + \beta$		d
800	21	L ₂ Sss		с	999	15.5	$\alpha + \beta$		а
700	24	L ₂ Sss		с,а	803	89.5	$\alpha + \beta$		
650	23.5	L ₂ Sss		c,a	757	70.5	$\alpha + \gamma$		a
600	28.5	L _s Sss		c.a	700	24	$\alpha + \gamma$		с
500	23	$L_2Sss + \alpha$		c,a	757	70.5	$\alpha + \gamma$		
450	16.5	α		c,4	700	24	$\alpha + \gamma$		c
400	24.5	α		с,а	600	25	$\alpha + \gamma$		с,а
300	23	α"		c,a	500	22.5	$\alpha + \gamma$		с,а
		x	c = 0.28	·	700	72	γ		с
1152	0.16	α		Sample melted	1100	0.77		x = 0.42	d D (11 11)
1129	0.25	α		Partial melting	1160	0.66	α		", Partial melting
1110	0.16	α			1088	1/	α		a
1087	0.16	α			1113	4	α		a
10/0	0.5	α			1027	22 5	a		-
1047	V.16	α			1027	23.3	u		

QUINTANA AND WEST

T (°C)	<i>t</i> (hr)	X-ray resu	ults Comments	T (°C)	t (hr)	X-	ray results	Com	ments
900	67.5	α + β	d	502	20.5	γ + δ	·	a	
999	15.5	$\alpha + \beta$	a	412	23	γ+δ		a	
825	18	$\alpha + \beta$		1001	17		x = 0.52		
/90 772	175	$\alpha + \gamma$	a	1021	1/	β		0	
700	72.5	$\alpha + \gamma$	c	1009	18	β+γ		a.b	
/00	12	$\mathbf{r} = 0$	45	1100	17	a		-, b	
1159	0.5	α	Sample melted	960	45	$\hat{\beta} + \delta$			
1095	0.5	α		99 7	22	β+δ		a	
1110	6	α	a	935	17	$\beta + \delta$			
1130	3	α	a	905	14	$\gamma + \delta$			
1160	3	α	^a , Sample melted	855	17	$\gamma + \delta$		a	
1081	23	α	<i>a</i>	8/6	20.5	γ+δ		da	
1058	20 23 5	$\alpha + \beta$	r.	650	/U 66 5	γ+o ~		d	
1089	6	α	a	602	6	v v			
1040	18	$\alpha + \beta$		001	U	'	x = 0.55		
1050	4.58	$\alpha + \beta$		1200	0.25	G			
1024	23	α + β	a	1159	0.33	α + G			
1040	18	$\alpha + \beta$	a	1095	0.5	α			
1026	63.5	β	a	1024	0.5	β			
1050	18	$\alpha + \beta$		1100	1.5	α		a	
999	40.5	β	a	1110	2.5	$\alpha + G$		a	
850	1/ 25	$\beta + \gamma$	u a	1130	2.0/	$\alpha + G$		u	
1000	96	Υ A	c	1063	16.5	p B + G		a	
1020	19	р В	a	1180	1.5	G		a	
650	66.5	γ	đ	1069	14	$\alpha + \beta$			
		x = 0.	48	1077	18.5	α		a	
1081	17	β + α		1047	0.5	β			
1100	9	α	a,b	1010	0.5	β			
1128	2.75	α	a,b	805	2	$\beta + \gamma$		_	
1144	2	a . C	a,b, Partial melting	822	1	$\beta + \gamma$		u	
1169	1.3	α + G	^{<i>a,o</i>} , Sample melted	760 751	2	$\beta + \gamma$		a	
1092	19	α	U	652	25	$\gamma + \beta$		a,e	
1035	8	р В	a	846	2.5	B		a	
1021	17	β β + δ		776	23	γ			
960	45	$\gamma + \delta$		602	6	$\dot{\gamma} + \beta$		e	
99 7	22	$\dot{\beta} + \delta$	a	725	20	γ			
905	14	$\gamma + \delta$		1047	0.5	β			
855	17	$\gamma + \delta$	a	800	22	β		c,a	
800	70	$\gamma + \delta$	d,a d	/00	21.5	γ		c,e	
650	66.5	γ+δ	<i>u</i> 0.5	400	23.J 66	$\gamma + \beta$		c.a.e	
1159	03	a+G	^b Sample melted	750	20	$\gamma + 112$		c,a	
1128	0.5	α	b b			,	x = 0.57		
1057	19	β/γ		1200	0.25	G			
1065	18	β/γ	a	1178	0.25	G			
1075	3.25	β/γ	a	1115	4	α + G			
1085	4	β/γ	a ,	1094	0.58	$\alpha + G$			
1094	4	α	<i>a,b</i>	1047	17	β		4	
1081	1/	β/γ	a.b	1009	10	$\alpha + G$		a	
1128	2.75	a	a,b	903	3	8			
1144	2	α	a,b	1063	16.5	ά		a	
1169	1.5	α + G	^{<i>a</i>,<i>b</i>} , Sample melted	1034	16.75	β		a	
1057	19	β/γ	-	1049	3.5	β			
1034	16.5	β	a	1055	3.75	α+β		a	
1020	3.5	$\beta + \delta$	a	1063	16.5	α			
004 1008	17.5	β+δ	a	1028	4	ß		a	
503 818	22.5	0 8	a	800	22	р В		c,a	
700	42	δ	c,a	700	21.5	$\ddot{B} + \gamma$		c,e	
668	23	$\gamma + \delta$		600	23.5	$\beta + \gamma$		с,а,е	
603	19	$\dot{\gamma} + \delta$	a	400	66	$\beta + \gamma +$	112	c,a,e	

TABLE II—Continued

T (°

603

502

412

1119

1080

19

23

20.5

1.25 G

0.5

β

trace $\gamma + \beta$

trace $\gamma + \beta$

 $\alpha + G$

x = 0.7

T (°C)	<i>t</i> (hr)	X-ray results	Comments	T (°C)	<i>t</i> (hr)	X-ray results	Comments
750	20	γ + 112	c	1062	0.5	$\alpha + G$	
725	20	$\gamma + \beta$	e	1040	7	$\alpha + G$	
776	23	γ	e	1035	1	$\alpha + \beta + G$	e
602	6	$\gamma + \beta + 112$	a,e	1035	3.83	α + trace G	a
668	23	$\gamma + \beta$	e	1031	4	β + trace G	
603	19	$\gamma + \beta$	a,e	1047	0.5	$\alpha + G$	
502	20.5	$\gamma + \beta$	a.e	1028	1	β + trace G	a
412	23	$\gamma + \beta$	a,e	1019	3.16	β + trace G	a
		x = 0.6		1010	3.75	β + trace 112	a
1163	0.13	$\alpha + G$	e	1024	2.66	trace $\alpha + \beta$ + trace G	e
1143	0.42	$\alpha + G$	e	1023	5.16	β + trace G	а
1094	0.58	α + G		1028	1	β + trace G	
1020	23	β	d	1000	28	B + 112	a
1080	18	α + trace G	d,a	600	23 5	v + 112	с
1055	5.5	α + trace G		400	66	$\gamma + 112$	с,а
1046	22	α + trace β		725	20	x + 112	a
1034	16.75	β + trace G	a	776	23	$\gamma + 112$	a
1028	4.5	ß		800	65	$\gamma + 112$	а
1044	3	ß	a	851	28.5	B + 112	a
1049	3.5	$\alpha + \beta$	а	878	20.5	$\gamma + 112$	a
1055	3.75	α	a	020	22	y + 112 n = 0.75	
903	3	β + trace 112				x = 0.75	
1005	3	β	a	1149	1.08	G	
980	21.5	β	a	1082	2	$G + trace \alpha$	
950	24	β + trace 112	a	1058	1	$\alpha + G$	
800	22	$\beta + 112$	c	1050	6.5	$\alpha + G$	
700	21.5	$\gamma + 112$	с	1040	7	$\alpha + \beta + G$	e
600	23.5	$\gamma + 112 + B$	c,0,e	1040	18	$\alpha + G$	
400	66	v + 112	с,а	1028	23	$112 + \beta + G$	e
1020	23	ß	đ	1019	19.75	$112 + \beta$	
725	23	B	a,e	1013	23.75	$112 + \beta$	
668	23	$\gamma + \beta$	e			x = 0.8	
603	19	$\gamma + \beta$	a,e	1072	0.5	G	
502	20.5	$\gamma + \beta$	a.e	900	25	B + 112	a
412	23	$\gamma + \beta$	0,E	1052	17	Ġ	
		x = 0.65		900	25	$\beta + 112$	a
1149	1.08	G		1028	23	$\beta + 112 + G$	e
1130	1.16	$G + trace \alpha$		1011	52	$\beta + 112$	
1098	2.33	$\alpha + G$		1020	4	β + 112 + trace G	e.a
1027	17	β + G				· · · · · · · · · · · · · · · · · · ·	
1044	18	$\alpha + G$	a	1007	1.5	x = 0.00	
1039	2.25	α + G		1082	1.2	trace LO ₅ + G	
1029	4.33	β + trace G		1036	22	112 + IG + G	
1020	23	β + trace G		1044	22 6	112 + 105 + 0	
1010	15.67	β + trace G		1027	25.5	$112 + \beta$	
1002	23.75	β + trace 112		777	13.3	$112 \pm \beta$	
986	15	β + trace 112				x = 0.9	
965	22.5	β + trace 112		1155	1	G	
1020	23	β + trace G		1128	2	trace LG ₃ + G	
725	23	β	a,e	1097	2	trace $LG_5 + G$	
668	23	β	e	1080	4	$LG_5 + G$	

TABLE II—Continued

Note. Compositions are given as x in the formula $L_{i_{4-3x}}Ga_xSiO_4$. Unless stated otherwise, samples wrapped in Pt foil were heated in vertical tube furnaces, temperatures accurate to within 5°C, and quenched into Hg at the end of the experiment. Abbreviations: LG3, LiGa₃O₈; 112, LiGa₅O₄; $\alpha, \alpha', \alpha'', \alpha', \alpha'', \alpha_{-1,4-3}$, Ga₅Ga₁+J₂O₈; β, β -Li₅₋₃, Ga₁+J₂O₈; γ, γ -Li₅₋₃, Ga₁₊₇Si₂O₈; δ, δ -Li₅Ga₅i₂O₈; G, glass; L₂Sss, solid solution of Li₄SiO₄; L₂S', low-temperature form of Li₄SiO₄ss.

1052

1040

1028

1011

1020

1058

17

7

23

52

4

3.5

 $LG_{5} + 112 + G$

 $LG_{5} + 112 + G$

 $LG_{5} + 112 + G$

 $112 + \beta$

 $112 + \beta$

 $112 + \beta + \text{trace G}$

a

a

^a The sample used in this experiment had been used previously for the preceding experiment in the table.

^b The X-ray powder pattern indicated a mixture of two α phases, of different composition.

^c Temperature accurate to ±30°C; sample cooled in air at the end of the experiment.

a.e

a,e

a.e

^d Furnace temperature accurate to $\pm 20^{\circ}$ C; sample quenched at the end of the experiment.

" The sample had not reached equilibrium in this experiment.

QUINTANA AND WEST

	TABLE III	
X-Ray	DIFFRACTION	Data

d(obs)	d(calc)	hkl	I	d(obs)	d(calc)	hkl	I
	α -Li _{4-3x} Ga _x SiO ₄ ^a	x = 0.35		1.8272	1.8241	222	25
	tetragonal, $a = 3$	5.196 ± 0.00	3 Å	1.8148 ^b	1.8148	312	10
	c = 0	6.186 ± 0.01	0 Å	1.7994	(1.8003	303]	10
5 1950	5 1955	010	<5		1.7965	024	
3 9664	3 9786	010	80	1.6912	1.6918	313	10
3 6659	3 6738	110	15	1.6790	1.6793	106	10
3 1316	3 1588	111	30	1.6374	1.6382	304	<5
2 6486	2.6578	012	75	1.6026	1.6022	320	<5
2 5902	2.5978	020	100	1.5825	1.5837	321	<5
2.3902	2.1751	211	5	1.5728 ^b	1.5728	032	10
1 8587	1 8578	122	10	1.5228	1.5250	206	45
1.8465	1.8369	220	10	1.4958	1.4932	007	15
1 7884	1 7982	113	5	1.4526	(1.4556	323]	
1.7004	1.6677	031	< 5		1.4531	107	
1 5786	1.5377	222	< 5		1.4507	133	25
1.5766	1.5724	123	5	1.4258	(1.4296	0171	
1.5410	1.5111	032	30		1.4246	225	
1.5007	1.5111	132	< 5		1.4244	026	<5
1 2256	1 3262	033	5	1.3509	(1.3502	404	
1 309/	1.3262	322	<5		1.3496	207	15
1.3074	1.3002	040	5	1.3303	1.3298	420	15
1.2903	1.2707	040 214)	5				
1.2070	1.2850	133	5	v-Li:GaS	i2O.º		
1 2287	1 2246	330	<5	orthorho	mbic. $a = 12.52$	26 ± 0.006 Å	
1.2207	(1.2013	331)	<5	01.00000	b = 9.92	27 ± 0.008 Å	
1.2001	1.1976	042	- 5		c = 10.48	$36 \pm 0.004 \text{ Å}$	
	-	-		7.783	7.780	110	25
				6.251	(6.263	200]	55
	β -Li _{5-3y} Ga _{1+y} Si ₂ O ₈	y = 0.14			6.248	111	
	orthorhombic, $a =$	$= 6.308 \pm 0$.004 Å	5.368	5.377	201	25
	<i>b</i> =	$= 4.948 \pm 0$.005 Å	4.347	4.348	112	30
	<i>c</i> =	$= 10.453 \pm 0$.004 Å	4.018	4.020	202	70
4.014	4.025	102	60	3.884	3.890	220	75
3.899	3.893	110	40	3.832	3.849	310	10
3.651	3.648	111	20	3.635	3.647	221	70
3.129	3.122	112	20	3.6099	(3.6130	311)	10
2.8489	2.8488	013	25		3.6044	022	
2.6990	2.7005	202	80	3.1913	3.1991	130	25
2.6092	2.6132	004	50		3.1884	113	
2.5971	2.5963	113	45	3.1119 ^d	3.1240	222)	30
2.5802	2.5775	211	40		3.1025	312	
2.4643	2.4739	020	100	3.0590	3.0599	131	30
2.4141	2.4142	104	<5	2.8598	2.8578	023	10
2.3715	2.3704	212	<5	2.6858	2.6884	402	100
2.1136	2.1141	213	25	2.6262	2.6215	004	80
1.9238	(1.9257	015]	<5	2.5993 ^d	(2.5999	223]	30
	1.9213	123			2.5933	330 }	
1.9048	1.9029	311	<5		2.5875	313]	

d(obs)	d(calc)	hkl	Ι	d(obs)	d(calc)	hkl	Ι
2.5652	2.5678	421	25		δ-Li5GaSi2O8	;	
2.4816	[2.4843	114	100	7,3438			5
	2.4816	040∫		6.1946			10
2.3641	2.3639	422	20	5.9331			10
2.3292	{2.3324	403]	5	4.6973			20
	2.3245	332		4,4952			85
2.2012	2.2040	512	5	3.8462			10
2.1744	2.1739	224	5	3.6508			40
2.1090	2.1109	423	20	3.4184			10
2.0806	2.0827	333	5	3.3807			20
2.0306	2.0277	134	10	3.3298			30
1.9909	(1.9947	513)	5	3.3032			25
	1.9887	205		3.2394			5
1 93064	(1 9319	025)	10	3.1769			15
1.9500	1.9274	151	10	3.0170			5
1 9041	1 9027	621	10	2.7045			100
1.0741	(1.0727	021	10	2.6604			10
1.8519		424	10	2.4814			5
	(1.8460	225]		2.3938			60
1.8275 ^a	1.8366	152	15	2.3672			25
	[1.8235	442]		2.3471 ^d			30
1.8042	∫1.8065	622	20	2.3285			35
	[1.8022	044∫		2.1695 ^d			5
1.7350			10	2.0602			5
1.6870			5	1.8029			10
1.6336			<5	1.7911			10
1.6023 ^d			10	1.7818			10
1.5636			25	1.7289 ^d			5
1.5278			40	1.6625			5
1.4962			25	1.6377			<5
1.4523			15	1.5602			40
1.4449			10	1.3822			5
1.4323			10	1.3740			10
1.3518			5	1.3672			10
1.3443			10	1.3513			5
1.3259			5	1.3103			10
1,3178			20	1.3010			15

TABLE III—Continued

^a Quartz was used as internal standard.

^b These peaks overlapped with the KCl internal standard; for them, the calculated d-spacing is given.

^c KCl was used as internal standard.

^d Closely spaced doublets.

tions, the likely replacement mechanism is $3Li \rightleftharpoons Ga$, giving rise to either Li interstitials or vacancies, depending on x.

For compositions in the range $\sim 0.4 < x < \sim 0.6$, the α phase is stable only at high temperatures and transforms to other

phases on cooling. These transformations are fairly slow, however, and can be avoided by cooling the samples quickly. For compositions around $x \approx 0.5$, the powder patterns of the quenched samples were poor with broad lines and some line split-

FIG. 2. Lattice parameters of tetragonal α phase as a function of composition.

tings in the α pattern. It is believed that on cooling these samples, they enter a metastable immiscibility dome such that the high-temperature, homogeneous α phase separates into two phases, one of higher x and one of lower x. This process may take place by a spinodal decomposition mechanism and cannot be avoided, even by quenching the samples into mercury.

On annealing the α phase at low temperatures, 300–500°C, for compositions in the range 0.25–0.40, weak extra lines appear, indicating the probable formation of a superstructure. They appeared in two stages, giving the patterns labeled as α' and α'' . α' formed at 400–500°C and α'' at 300–400°C, both with annealing times of 1–3 days. The patterns have not been measured accurately and indexed, but are shown as schematic line diagrams in Fig. 3.

The β Phase

This phase has the ideal stoichiometry, Li₅GaSi₂O₈. In addition, it forms a solid solution to either side of this composition with general formula, $\text{Li}_{5-3y}\text{Ga}_{1+y}\text{Si}_2\text{O8}$. The compositional limits of the solid solution depend on temperature but are a maximum at y = 0.27 and 1015°C and at y =-0.14 and ~ 800 °C. Note that the values of y in this formula change at double the rate of the values of the composition scale in Fig. 1. Hence y = 0.27 corresponds to the composition 0.635 of Fig. 1 and y = -0.14corresponds to composition 0.43.

The phase diagram, Fig. 1, shows that the β phase is thermodynamically stable only for a limited range of high temperatures which is also very composition depen-

FIG. 3. Schematic X-ray line diagram.

FIG. 4. Transformation between β and γ phases.

dent. Thus at y = 0, composition 0.50, β is stable between 1030 and 1090°C, whereas to either side of this composition, its stability range moves to lower temperatures.

The effect of changing the temperature of the β phase is to cause it to transform to other phases. At higher temperatures, the entire range of β compositions transforms to the α structure. At lower temperatures, two kinds of behavior are observed. On fairly rapid cooling, transformation to the γ phase occurs, as shown in Fig. 4. On prolonged annealing of samples of composition y = 0.0, at ~1000°C, transformation to the δ phase occurs and it is this behavior which is shown on the equilibrium phase diagram (Fig. 1). For compositions to either side of y = 0.0, transformation to the γ phase represents the equilibrium situation and also appears on the phase diagram.

The characterization of the β phase was possible using a combination of quenching experiments, X-ray diffraction, and DTA. For compositions to either side of, but not including, y = 0.0, β could be quenched to room temperature. It was therefore possible to determine the stability field for β at these compositions using quenching/X-ray diffraction. For compositions close to and including y = 0.0, β converted to γ during quenching. The extra X-ray reflections characteristic of γ were broad in these quenched samples, however, which was a strong indication that the structure was indeed β at the furnace temperature. Since the $\beta \rightleftharpoons \gamma$ transition was rapid, it could be followed by DTA, giving a clear endotherm on heating and an exotherm on cooling. The DTA results were consistent with the X-ray results: for that part of the composition range in which the transition could be followed by both X-ray diffraction and DTA, the transition temperatures obtained by the two techniques were in good agreement.

The X-ray powder pattern of β shows strong similarities to those of γ -Li₃PO₄ (high form) (10) and $Li_4Zn(PO_4)_2$ (11). A similar-sized orthorhombic unit cell was used to index the data (Table III) and is consistent with unit cell contents of 2 formula units; again, an internal standard was added to measure accurately and index the complete pattern for one composition. The data are given for an off-stoichiometric composition, since this could be prepared readily as pure β without transformation to γ . It seems likely that the structure is closely related to that of γ -Li₃PO₄ but crystallographic work is needed to confirm this since, although the cation: anion ratio is unity in both, three different cation types are present in β . One possibility is that the Si in β occupies the P sites and that the Li, Ga in β occupy the Li sites of Li₃PO₄, either in ordered or disordered fashion.

The powder pattern of the β phase changed with composition. The lattice parameters were determined for a range of compositions, using a similar method to that indicated above for the α phase. These are shown in Fig. 5 for those compositions with y > 0.0; *a* increases with increasing *y*, *b* is unchanged, and *c* decreases.

FIG. 5. Lattice parameters of orthorhombic β phase as a function of composition.

The γ Phase

This phase also has the ideal stoichiometry $Li_5GaSi_2O_8$ and forms a limited range of solid solutions to either side. From the phase diagram studies, it is thermodynamically stable only at compositions to either side of, but not including, the ideal composition (Fig. 1). It is a low-temperature phase, forming below ~980°C at the ideal composition and at lower temperatures for other compositions (Fig. 4).

It forms from the β phase on cooling and the $\beta \rightleftharpoons \gamma$ transition appears to be an orderdisorder transition, as shown by the appearance of extra lines in its powder pattern by comparison with that of the β phase. The γ phase powder pattern may be indexed on an orthorhombic unit cell similar to that of the β phase but with *a* and *b* doubled (Table III). The structure of the γ phase is not known but it appears to be based on that of γ -Li₃PO₄, with cation ordering. A similar ordering transition was observed in Li₄Zn(PO₄)₂ (11).

The δ Phase

This phase also has the stoichiometry Li_5 GaSi₂O₈ and appears to be a line phase with no significant solid solution. It is thermodynamically stable below 1030°C and appears on the phase diagram (Fig. 1). It does not form rapidly; several days heating at 1000°C are required to give a pure phase. Its structure is completely unknown; unindexed powder data are given in Table I.

Li₄SiO₄ Solid Solutions

These have the formula $\text{Li}_{4-3x}\text{Ga}_x\text{SiO}_4$ and form over the range 0 < x < -0.26. Their compositional extent depends on temperature in a rather unusual manner. It is a maximum for $x \approx 0.26$ at -1000°C but at both higher and lower temperatures, the high x compositions, 0.22-0.26, transform reversibly to the α phase.

 Li_4SiO_4 is a complex material with hightemperature polymorphism and several DTA peaks at temperatures of ~ 400 and 600-750°C (12). A comprehensive study of the polymorphism of the present Li₄SiO₄ solid solutions has not been made. For low x compositions, DTA effects were also observed around 600-700°C, attributed to a low-high transition in Li₄SiO₄, but these faded out with increasing x. With higher xcompositions, however, extra X-ray lines were observed on annealing solid solutions at 300-400°C for several hours or days and are probably due to the formation of a superstructure; this may or may not be related to the superstructure found in some Li_4SiO_4 crystals (13).

Considerable changes in the X-ray powder patterns of the Li_4SiO_4 solid solutions occur both with increasing x and with annealing. The patterns simplify somewhat in that split lines in Li₄SiO₄ gradually move closer together and some weak lines appear to disappear; however, other lines appear, especially in the low-temperature annealed samples. Some of these effects are illustrated as line diagrams in Fig. 3. Because of these complexities and the occurrence of several effects simultaneously, no attempt has been made to determine a complete diagram showing the polymorphism of these solid solutions or to index the powder data. It seems likely that the high-temperature solid solutions shown on the phase diagram have the high- Li_4SiO_4 structure and these have been labeled as such. The low-temperature ordered phase characterized by the appearance of extra X-ray lines has been labeled L_2S' (Fig. 3).

The transition from the Li₄SiO₄ structure to the α phase structure with increasing x appears to be continuous. There was no evidence from the phase diagram studies of a two-phase region separating the two solid solution fields. In addition, the powder pattern of the Li₄SiO₄ solid solutions changed continuously with increasing x until it became indistinguishable from that of the α phase. Thus, some of the line splittings in Li_4SiO_4 which decrease with increasing x became a single line in α ; examples are seen in Fig. 3. Crystallographic work is required to establish the structural relation between the Li₄SiO₄ and α structures and to show whether the transition is indeed continuous.

The Phase Diagram Li₄SiO₄-LiGaSiO₄

The phase diagram (Fig. 1) shows the stability ranges of the five phases described above, four of which are solid-solution phases. These phases all have compositions on this join and the phase diagram is a binary diagram, apart from in the region of melting of LiGaSiO₄-rich compositions. Thus, in these compositions at some temperatures, the phase $LiGa_5O_8$ is present and its composition clearly does not lie on the title join.

Melting behavior on this join was determined from a combination of DTA, X-ray diffraction, and optical microscopy of quenched samples and the appearance of pelleted samples after heating at various temperatures. Determination of melting behavior in LiGaSiO₄-rich compositions was greatly helped by the occurrence of glass formation on quenching liquids containing >70% LiGaSiO₄. For these compositions, it was possible to heat samples isothermally, quench them into Hg, and analyze the products by optical microscopy/X-ray diffraction; the presence of glass in partially or completely melted samples was readily apparent from the microscopic examination. Hence, the eutectic temperature of 1015°C and the complex melting behavior of LiGaSiO₄-rich compositions was readily determined by this method. Full details of the experimental results which were used to construct the phase diagram are given in Table III (14).

Acknowledgments

Thanks are due to the British Council for supporting the Aberdeen-Mexico collaboration programme, UNAM for granting leave of absence (P.Q.), and the Royal Society of Edinburgh for a Support Fellowship (A.R.W.).

References

- 1. P. W. MCMILLAN, "Glass Ceramics," 2nd ed., Academic Press, New York (1979).
- E. CHAVIRA, P. QUINTANA, AND A. R. WEST, Brit. Ceram. Trans. J. 86, 161 (1987).
- 3. P. QUINTANA AND A. R. WEST, Solid State Ionics 23, 179 (1987).
- 4. A. R. WEST, J. Appl. Electrochem. 3, 327 (1973).
- 5. R. D. SHANNON, B. E. TAYLOR, A. D. ENGLISH, AND T. BERZINS, *Electrochim. Acta* 22, 783 (1977).
- Y.-W. HU, I. D. RAISTRICK, AND R. A. HUGGINS, J. Electrochem. Soc. 124, 1240 (1977).
- 7. M. MAREZIO, Acta Crystallogr. 19, 396 (1965).

- 8. A. R. WEST, Z. Kristallogr. 141, 422 (1975).
- 9. A. R. WEST, AND P. G. BRUCE, Acta Crystallogr. Sect. B 38, 1891 (1982).
- 10. J. ZEMANN, Acta Crystallogr. Sect. B 13, 863 (1960).
- 11. G. TORRES-TREVINO AND A. R. WEST, J. Solid State Chem. 61, 56 (1986).
- 12. A. R. WEST AND F. P. GLASSER, J. Mater. Sci. 5, 557, 676 (1970).
- 13. D. TRANQUI, R. D. SHANNON, H.-Y. CHEN, S. JIIMA, AND W. H. BAUR, Acta Crystallogr. Sect. B 35, 2479 (1979).
- 14. P. QUINTANA, Ph.D. thesis, Universidad Nacional Autonoma de Mexico, in preparation.